Welcome to the Podiatry Arena forums

You are currently viewing our podiatry forum as a guest which gives you limited access to view all podiatry discussions and access our other features. By joining our free global community of Podiatrists and other interested foot health care professionals you will have access to post podiatry topics (answer and ask questions), communicate privately with other members, upload content, view attachments, receive a weekly email update of new discussions, access other special features. Registered users do not get displayed the advertisements in posted messages. Registration is fast, simple and absolutely free so please, join our global Podiatry community today!

  1. Have you considered the Clinical Biomechanics Boot Camp Online, for taking it to the next level? See here for more.
    Dismiss Notice
Dismiss Notice
Have you considered the Clinical Biomechanics Boot Camp Online, for taking it to the next level? See here for more.
Dismiss Notice
Have you liked us on Facebook to get our updates? Please do. Click here for our Facebook page.
Dismiss Notice
Do you get the weekly newsletter that Podiatry Arena sends out to update everybody? If not, click here to organise this.

Prehistoric podiatry: How dinos carried their enormous weight

Discussion in 'Break Room' started by NewsBot, Aug 10, 2022.

Tags:
  1. NewsBot

    NewsBot The Admin that posts the news.

    Articles:
    1

    Members do not see these Ads. Sign Up.
    Press release:
    Prehistoric podiatry: How dinos carried their enormous weight

    Scientists have cracked an enduring mystery, discovering how sauropod dinosaurs – like Brontosaurus and Diplodocus – supported their gigantic bodies on land.

    A University of Queensland and Monash University-led team used 3D modelling and engineering methods to digitally reconstruct and test the function of foot bones of different sauropods.

    Dr Andréas Jannel conducted the research during his PhD studies at UQ’s Dinosaur Lab and said the team found that the hind feet of sauropod had a soft tissue pad beneath the ‘heel’, cushioning the foot to absorb their immense weight.

    “We’ve finally confirmed a long-suspected idea and we provide, for the first time, biomechanical evidence that a soft tissue pad – particularly in their back feet – would have played a crucial role in reducing locomotor pressures and bone stresses,” Dr Jannel said.

    “It is mind-blowing to imagine that these giant creatures could have been able to support their own weight on land.”

    Sauropods were the largest terrestrial animals that roamed the Earth for more than 100 million years.

    They were first thought to have been semi-aquatic with water buoyancy supporting their massive weight, a theory disproved by the discovery of sauropod tracks in terrestrial deposits in the mid-twentieth century.

    Monash University’s Dr Olga Panagiotopoulou said it had also been thought sauropods had feet similar to a modern-day elephant.

    “Popular culture – think Jurassic Park or Walking with Dinosaurs – often depicts these behemoths with almost-cylindrical, thick, elephant-like feet,” Dr Panagiotopoulou said.

    “But when it comes to their skeletal structure, elephants are actually ‘tip-toed’ on all four feet, whereas sauropods have different foot configurations in their front and back feet.

    “Sauropod’s front feet are more columnar-like, while they present more ‘wedge high heels’ at the back supported by a large soft tissue pad.”

    UQ’s Associate Professor Steve Salisbury said this was because sauropods and elephants had different evolutionary origins.

    “Elephants belong to an ancient order of mammals called proboscideans, which first appeared in Africa roughly 60 million years ago as small, nondescript herbivores, ” Associate Professor Salisbury said.

    “In contrast, sauropods – whose ancestors first appeared 230 million years ago – are more closely related to birds.

    “They were agile, two-legged herbivores and it was only later in their evolution that they walked on all fours.

    “Crucially, the transition to becoming the largest land animals to walk the earth seems to have involved the adaptation of a heel pad.”

    The researchers now plan to use the 3D modelling and engineering methods to make further discoveries.

    “I’m keen to apply a similar method to an entire limb and to include additional soft tissue such as muscles, which are rarely preserved in fossils,” Dr Jannel said.

    “We’re also excited to study the limbs and feet of other prehistoric animals.

    “This should allow us to answer different questions about the biomechanics of extinct animals and better understand their environmental adaptations, movement and lifestyle.”

    Read the full paper in Science Advances (DOI: 10.1126/sciadv.abm8280).
     
  2. NewsBot

    NewsBot The Admin that posts the news.

    Articles:
    1
Loading...

Share This Page