Welcome to the Podiatry Arena forums

You are currently viewing our podiatry forum as a guest which gives you limited access to view all podiatry discussions and access our other features. By joining our free global community of Podiatrists and other interested foot health care professionals you will have access to post podiatry topics (answer and ask questions), communicate privately with other members, upload content, view attachments, receive a weekly email update of new discussions, access other special features. Registered users do not get displayed the advertisements in posted messages. Registration is fast, simple and absolutely free so please, join our global Podiatry community today!

  1. Have you considered the Clinical Biomechanics Boot Camp Online, for taking it to the next level? See here for more.
    Dismiss Notice
Dismiss Notice
Have you considered the Clinical Biomechanics Boot Camp Online, for taking it to the next level? See here for more.
Dismiss Notice
Have you liked us on Facebook to get our updates? Please do. Click here for our Facebook page.
Dismiss Notice
Do you get the weekly newsletter that Podiatry Arena sends out to update everybody? If not, click here to organise this.

Osteogenesis imperfecta

Discussion in 'General Issues and Discussion Forum' started by NewsBot, Jun 18, 2021.

Tags:
  1. NewsBot

    NewsBot The Admin that posts the news.

    Articles:
    1

    Members do not see these Ads. Sign Up.
    NEWS RELEASE 14-JUN-2021
    Understanding the cause of joint and tendon dysfunction in osteogenesis imperfecta

    HOUSTON - (June 14, 2021) - Osteogenesis imperfecta (OI) is the most common genetic form of brittle bone disease and results in defects of both bone and connective tissue. OI patients can have significant problems with mobility due to joint dysfunction due in part to tendinopathy. In a new study published in the journal Proceedings of the National Academy of Sciences, researchers at Baylor College of Medicine identify a protein signaling mechanism driving this dysfunction and find that inhibiting this signaling pathway can prevent onset of tendinopathy problems in mouse models.

    The researchers studied mouse models of OI in which the Fkpb10 gene was deleted in tendons and ligaments. The mice developed contracture, a condition in which the tendons harden, leading to joint rigidity and limited motion. As a result of the Fkpb10 gene deletion, researchers also observed inflammation in the joints and localized formation of cartilage pieces in the tendon, both symptoms of chronic tendinopathy. These symptoms coincided with the increased expression of a gene that impacts cell differentiation.

    "We discovered an important signaling protein called Hedgehog, which is key in controlling the formation on cartilage, had been activated in the joints," said Dr. Brendan Lee, corresponding author of the study and Robert and Janice McNair Endowed Chair in Molecular and Human Genetics and professor and chair of the Department of Molecular and Human Genetics at Baylor.

    The team, led by Lee and first author and postdoctoral associate in the Lee Lab, Dr. Joohyun Lim, wanted to see if genetic and drug inhibition of the Hedgehog signaling pathway could prevent the onset of symptoms of tendinopathy.

    "By giving an FDA-approved Hedgehog signaling inhibitor, we delayed contracture and tendon degeneration and normalized joint function," said Lee, director of the Center for Skeletal Medicine and Biology at Baylor and co-director of the Rolanette and Berdon Lawrence Bone Disease Program of Texas. "We believe this could be a model for treating tendinopathy, not only in OI patients, but perhaps also in the general population."

    In the future, the researchers will also work to determine if targeting inflammatory pathways as well as Hedgehog signaling can further prevent tendinopathy.
     
  2. NewsBot

    NewsBot The Admin that posts the news.

    Articles:
    1
    The prevalence of musculoskeletal pain and therapy needs in adults with Osteogenesis Imperfecta (OI) a cross-sectional analysis
    Sophie Barlow, Lucy Dove, Anju Jaggi, Richard Keen & Judith Bubbear
    BMC Musculoskeletal Disorders volume 23, Article number: 485 (2022)
     
  3. NewsBot

    NewsBot The Admin that posts the news.

    Articles:
    1
    The impact of foot orthoses on gait in children with Osteogenesis Imperfecta type I, III and IV - a cross-sectional study
    Josefine E Naili et al
    BMC Musculoskelet Disord. 2024 Jul 18;25(1):560.
     
  4. NewsBot

    NewsBot The Admin that posts the news.

    Articles:
    1
    First Trimester Fetal Clubfoot: A Novel Presentation of Severe Osteogenesis Imperfecta
    Chloe Barnett et al
    Am J Med Genet A. 2024 Sep 13
     

Share This Page